• 1.

    Dixon, J. E. et al. Light stable isotopic compositions of enriched mantle sources: resolving the dehydration paradox. Geochem. Geophys. Geosyst. 18, 3801–3839 (2017).

  • 2.

    Herzberg, C. Depth and degree of melting of komatiites. J. Geophys. Res. Solid Earth 97, 4521–4540 (1992).

  • 3.

    Sobolev, A. V. et al. Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531, 628–632 (2016).

  • 4.

    Asafov, E. V. et al. Belingwe komatiites (2.7 Ga) originate from a plume with moderate water content, as inferred from inclusions in olivine. Chem. Geol. 478, 39–59 (2018).

  • 5.

    Shaw, A. M., Hauri, E. H., Fischer, T. P., Hilton, D. R. & Kelley, K. A. Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep-Earth water cycle. Earth Planet. Sci. Lett. 275, 138–145 (2008).

  • 6.

    Portnyagin, M., Almeev, R., Matveev, S. & Holtz, F. Experimental evidence for rapid water exchange between melt inclusions in olivine and host magma. Earth Planet. Sci. Lett. 272, 541–552 (2008).

  • 7.

    Hartley, M. E., Neave, D. A., Maclennan, J., Edmonds, M. & Thordarson, T. Diffusive over-hydration of olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 425, 168–178 (2015).

  • 8.

    Jackson, M. G. et al. Ultra-depleted melts in olivine-hosted melt inclusions from the Ontong Java Plateau. Chem. Geol. 414, 124–137 (2015).

  • 9.

    Bucholz, C. E., Gaetani, G. A., Behn, M. D. & Shimizu, N. Post-entrapment modification of volatiles and oxygen fugacity in olivine-hosted melt inclusions. Earth Planet. Sci. Lett. 374, 145–155 (2013).

  • 10.

    Hauri, E. SIMS analysis of volatiles in silicate glasses, 2: isotopes and abundances in Hawaiian melt inclusions. Chem. Geol. 183, 115–141 (2002).

  • 11.

    Puchtel, I. S., Walker, R. J., Touboul, M., Nisbet, E. G. & Byerly, G. R. Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim. Cosmochim. Acta 125, 394–413 (2014).

  • 12.

    Gurenko, A. A., Kamenetsky, V. S. & Kerr, A. C. Oxygen isotopes and volatile contents of the Gorgona komatiites, Colombia: a confirmation of the deep mantle origin of H2O. Earth Planet. Sci. Lett. 454, 154–165 (2016).

  • 13.

    Andrault, D. et al. Deep and persistent melt layer in the Archaean mantle. Nat. Geosci. 11, 139–143 (2018).

  • 14.

    Herzberg, C. & Asimow, P. D. PRIMELT3 MEGA.XLSM software for primary magma calculation: peridotite primary magma MgO contents from the liquidus to the solidus. Geochem. Geophys. Geosyst. 16, 563–578 (2015).

  • 15.

    Robin-Popieul, C. C. M. et al. A new model for Barberton komatiites: deep critical melting with high melt retention. J. Petrol. 53, 2191–2229 (2012).

  • 16.

    Bercovici, D. & Karato, S. Whole-mantle convection and the transition-zone water filter. Nature 425, 39–44 (2003).

  • 17.

    Mibe, K., Orihashi, Y., Nakai, S. & Fujii, T. Element partitioning between transition-zone minerals and ultramafic melt under hydrous conditions. Geophys. Res. Lett. 33, https://doi.org/10.1029/2006GL026999 (2006).

  • 18.

    Roberge, M. et al. Is the transition zone a deep reservoir for fluorine? Earth Planet. Sci. Lett. 429, 25–32 (2015).

  • 19.

    Pearson, D. G. et al. Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507, 221–224 (2014).

  • 20.

    Kamenetsky, V. S., Gurenko, A. A. & Kerr, A. C. Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivine-hosted melt inclusions. Geology 38, 1003–1006 (2010).

  • 21.

    Révillon, S., Arndt, N. T., Chauvel, C. & Hallot, E. Geochemical study of ultramafic volcanic and plutonic rocks from Gorgona Island, Colombia: the plumbing system of an oceanic plateau. J. Petrol. 41, 1127–1153 (2000).

  • 22.

    Trela, J. et al. The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nat. Geosci. 10, 451–456 (2017).

  • 23.

    Ohtani, E. Hydrous minerals and the storage of water in the deep mantle. Chem. Geol. 418, 6–15 (2015).

  • 24.

    Walowski, K. J., Wallace, P. J., Hauri, E. H., Wada, I. & Clynne, M. A. Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat. Geosci. 8, 404–408 (2015).

  • 25.

    Chauvel, C., Goldstein, S. L. & Hofmann, A. W. Hydration and dehydration of oceanic-crust controls Pb evolution in the mantle. Chem. Geol. 126, 65–75 (1995).

  • 26.

    Hofmann, A. W. The message from oceanic volcanism. Nature 385, 219–229 (1997).

  • 27.

    Dhuime, B., Hawkesworth, C. J., Cawood, P. A. & Storey, C. D. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012).

  • 28.

    Herzberg, C. Petrological evidence from komatiites for an early Earth carbon and water cycle. J. Petrol. 57, 2271–2287 (2016).

  • 29.

    Hallis, L. J. et al. Evidence for primordial water in Earth’s deep mantle. Science 350, 795–797 (2015).

  • 30.

    Kendrick, M. A. et al. Seawater cycled throughout Earth’s mantle in partially serpentinized lithosphere. Nat. Geosci. 10, 222–228 (2017).

  • 31.

    Hofmann, A. W. Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth Planet. Sci. Lett. 90, 297–314 (1988).

  • 32.

    Asafov, E. V. et al. Olivine-hosted melt inclusions in the ancient komatiites – the potential key to the Archean mantle composition. In ECROFI-2017 50 (2017); http://2017.ecrofi.univ-lorraine.fr/files/2016/03/catalogue-ecrofi-basseresolution2.pdf.

  • 33.

    Pope, E. C., Bird, D. K. & Rosing, M. T. Isotope composition and volume of Earth’s early oceans. Proc. Natl Acad. Sci. USA 109, 4371–4376 (2012).

  • 34.

    Hanski, E. & Kamenetsky, V. S. Chrome spinel-hosted melt inclusions in Paleoproterozoic primitive volcanic rocks, northern Finland: evidence for coexistence and mixing of komatiitic and picritic magmas. Chem. Geol. 343, 25–37 (2013).

  • 35.

    Byerly, B. L., Kareem, K., Bao, H. M. & Byerly, G. R. Early Earth mantle heterogeneity revealed by light oxygen isotopes of Archaean komatiites. Nat. Geosci. 10, 871–875 (2017).

  • 36.

    Wetzel, D. T., Hauri, E. H., Saal, A. E. & Rutherford, M. J. Carbon content and degassing history of the lunar volcanic glasses. Nat. Geosci. 8, 755–758 (2015).

  • 37.

    Hauri, E. H. et al. Matrix effects in hydrogen isotope analysis of silicate glasses by SIMS. Chem. Geol. 235, 352–365 (2006).

  • 38.

    Krasheninnikov, S. P., Sobolev, A. V., Batanova, V. G., Kargaltsev, A. A. & Borisov, A. A. Experimental testing of olivine–melt equilibrium models at high temperatures. Dokl. Earth Sci. 475, 919–922 (2017).

  • 39.

    Sobolev, A. V. & Danyushevsky, L. V. Petrology and geochemistry of boninites from the north termination of the Tonga trench: constraints on the generation conditions of primary high-Ca boninite magmas. J. Petrol. 35, 1183–1211 (1994).

  • 40.

    Danyushevsky, L. V., Della-Pasqua, F. N. & Sokolov, S. Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications. Contrib. Mineral. Petrol. 138, 68–83 (2000).

  • 41.

    Danyushevsky, L. V. & Plechov, P. Petrolog3: integrated software for modeling crystallization processes. Geochem. Geophys. Geosyst. 12, https://doi.org/10.1029/2011GC003516 (2011).

  • 42.

    Ford, C. E., Russell, D. G., Craven, J. A. & Fisk, M. R. Olivine liquid equilibria: temperature, pressure and composition dependence of the crystal liquid cation partition-coefficients for Mg, Fe2+, Ca and Mn. J. Petrol. 24, 256–266 (1983).

  • 43.

    Kareem, K. Komatiites of the Weltevreden Formation, Barberton Greenstone Belt, South Africa: Implications for the Chemistry and Temperature of the Archean Mantle. PhD thesis, Louisiana State Univ. (2005).

  • 44.

    Ludwig, K. R. User’s Manual for Isoplot 3.75: A Geochronological Toolkit for Microsoft Excel. Special Publication No. 5 (Berkeley Geochronology Center, 2012).

  • 45.

    Wendt, I. & Carl, C. The statistical distribution of the mean squared weighted deviation. Chem. Geol. 86, 275–285 (1991).

  • Article credit to: http://feeds.nature.com/~r/nature/rss/current/~3/8qH_K08OEI8/s41586-019-1399-5

    Similar Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *