• 1.

    Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

  • 2.

    Fischer, J. & Ganellin, C. R. (eds) Analogue-based Drug Discovery 206–217 (Wiley, 2006).

  • 3.

    Williamson, W. Ueber die theorie der aetherbildung. Justus Liebigs Ann. Chem. 77, 37–49 (1851).

  • 4.

    Kürti, L. & Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis 484–485 (Elsevier, 2005).

  • 5.

    Swamy, K. C. K., Kumar, N. N. B., Balaraman, E. & Kumar, K. V. P. P. Mitsunobu and related reactions: advances and applications. Chem. Rev. 109, 2551–2651 (2009).

  • 6.

    Beyerman, H. C. & Heiszwolf, G. J. Reaction of steroidal alcohols with isobutene. Usefulness of t-butyl as a hydroxyl-protecting group in a synthesis of testosterone. Recl. Trav. Chim. Pays-Bas 84, 203–212 (1965).

  • 7.

    Smith, M. B. & March, J. March’s Advanced Organic Chemistry 1037–1041 (Wiley, 2007).

  • 8.

    Abraham S. et al. Aurora kinase compounds and methods of their use. International patent no. WO2011088045A1 (2011).

  • 9.

    Kolbe, H. Beobachtungen über die oxydirende wirkung des sauerstoffs, wenn derselbe mit hülfe einer elektrischen säule entwickelt wird. J. Prakt. Chem. 41, 137–139 (1847).

  • 10.

    Hofer, H. & Moest, M. Mittheilung aus dem elektrochemischen Laboratorium der Königl, Technischen Hochschule zu München. Justus Liebigs Ann. Chem. 323, 284–323 (1902).

  • 11.

    Corey, E. J., Bauld, N. L., La Londe, R. T., Casanova, J., Jr & Kaiser, E. T. Generation of cationic carbon by anodic oxidation of carboxylic acids. J. Am. Chem. Soc. 82, 2645–2646 (1960).

  • 12.

    Luo, X., Ma, X., Lebreux, F., Markó, I. E. & Lam, K. Electrochemical methoxymethylation of alcohols – a new, green and safe approach for the preparation of MOM ethers and other acetals. Chem. Commun. 54, 9969–9972 (2018).

  • 13.

    Bunyan, P. J. & Hey, D. H. The electrolysis of some aryl-substituted, aliphatic acids. J. Chem. Soc. 1360–1365 (1962).

  • 14.

    Iwasaki, T., Hrorikawa, H., Matsumoto, K. & Miyoshi, M. Electrochemical synthesis and reactivity of α-alkoxy α-amino acid derivatives. Bull. Chem. Soc. Jpn. 52, 826–830 (1979).

  • 15.

    Tajima, T., Kurihara, H. & Fuchigami, T. Development of an electrolytic system for non-Kolbe electrolysis based on the acid−base reaction between carboxylic acids as a substrate and solid-supported bases. J. Am. Chem. Soc. 129, 6680–6681 (2007).

  • 16.

    Shtelman, A. V. & Becker, J. Y. Electrochemical synthesis of 1,2-disilylethanes from α-silylacetic acids. J. Org. Chem. 76, 4710–4714 (2011).

  • 17.

    Torii, S., Inokuchi, T., Mizuguchi, K. & Yamazaki, M. Electrolytic decarboxylation reactions. 4. Electrosyntheses of 3-alkyl-2-cycloalken-1-ol acetates from 1-alkyl-2-cycloalkene-1-carboxylic acids. Preparation of dl-muscone from cyclopentadecanone. J. Org. Chem. 44, 2303–2307 (1979).

  • 18.

    Coleman, J. P., Lines, R., Utley, J. H. P. & Weedon, B. C. L. Electro-organic reactions. Part II. Mechanism of the kolbe electrolysis of substituted phenylacetate ions. J. Chem. Soc., Perkin Trans. 2 1064–1069 (1974).

  • 19.

    Mao, R., Balon, J. & Hu, X. Decarboxylative C(sp3)–O cross-coupling. Angew. Chem. Int. Ed. 57, 13624–13628 (2018).

  • 20.

    Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

  • 21.

    Ross, S. D. & Finkelstein, M. Anodic oxidations. V. The Kolbe oxidation of phenylacetic acid and 1-methylcyclohexaneacetic acid at platinum and at carbon. J. Org. Chem. 34, 2923–2927 (1969).

  • 22.

    Schäfer, H. J. Recent contributions of Kolbe electrolysis to organic synthesis. Top. Curr. Chem. 152, 91–151 (1990).

  • 23.

    Koehl, W. J. Anodic oxidation of aliphatic acids at carbon anodes. J. Am. Chem. Soc. 86, 4686–4690 (1964).

  • 24.

    Iwasaki, T., Horikawa, H., Matsumoto, K. & Miyoshi, M. An electrochemical synthesis of 2-acetoxy-2-amino acid and 3-acetoxy-3-amino acid derivatives. J. Org. Chem. 42, 2419–2423 (1977).

  • 25.

    Huang, X., Liu, W., Hooker, J. M. & Groves, J. T. Targeted fluorination with the fluoride ion by manganese-catalyzed decarboxylation. Angew. Chem. Int. Ed. 54, 5241–5245 (2015).

  • 26.

    Eberson, L. & Nyberg, K. Studies on the Kolbe electrolytic synthesis. V. An electrochemical analogue of the Ritter reaction. Acta Chem. Scand. 18, 1567–1568 (1964).

  • Article credit to: http://feeds.nature.com/~r/nature/rss/current/~3/oWSFebXcf_8/s41586-019-1539-y

    Similar Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *