• 1.

    Aubert, M. et al. Pleistocene cave art from Sulawesi, Indonesia. Nature 514, 223–227 (2014).

  • 2.

    Chazine, J. M. Nouvelles perspectives archéologiques à Bornéo, Kalimantan. Anthropologie 99, 667–670 (1995).

  • 3.

    Chazine, J. M. & Fage, L. H. La ligne de Wallace a-t-elle été franchie par les artistes des temps préhistoriques? Deux nouvelles grottes ornées à Bornéo (E Kalimantan). Karstologia 32, 39–46 (1998).

  • 4.

    Chazine, J. M. & Fage, L. H. Préhistoire: découverte de grottes ornées à Bornéo. Archeologia 352, 12–19 (1999).

  • 5.

    Fage, L. H. & Chazine, J. M. L’art Pariétal des Grottes de Kalimantan (Indonésie). Bilan de 10 Années de Prospection. Découvertes Récentes de Juin 2001 et Perpectives de Protection (Actes du IIe Congrès national de Spéléologie, Geneva, 2001).

  • 6.

    Fage, L. H., Chazine, J. M. & Setiawan, P. Borneo, Memory of the Caves (Le Kalimanthrope, Caylus, 2010). 

  • 7.

    Setiawan, P. Monografi Karst Sangkulirang (Pemerintah Daerah Kutai Timur, Sangatta, 2007).

  • 8.

    Setiawan, P. Gambar Cadas Kutai Prasejarah, Kajian Pemenuhan Kebutuhan Terpadu, dan Komunikasi Rupa, Disertasi, Sekolah Pasca Sarjana (Institut Teknologi Bandung, Bandung, 2010).

  • 9.

    Setiawan, P. Gambar Cadas Prasejarah Indonesia (Direktorat Pelestarian Cagar Budaya dan Permuseuman, Jakarta, 2015).

  • 10.

    BPCB Kalimantan Timur. Delineasi Kawasan Sangkulirang Mangkalihat (Direktorat Pelestarian Cagar Budaya dan Permuseuman, Samarinda, 2016).

  • 11.

    Fage, L. H. & Chazine, J. M. Bornéo, la mémoire des grottes (Fage éditions, Lyon, 2009).

  • 12.

    Setiawan, P. et al. Atlas Sangkulirang (Dinas Lingkungan Hidup, Samarinda, 2012).

  • 13.

    Wilson, M. E. J., Chambers, J. L. C., Evans, M. J., Moss, S. J. & Nas, D. S. Cenozoic carbonates in Borneo: case studies from northeast Kalimantan. J. Asian Earth Sci. 17, 183–201 (1999).

  • 14.

    Grenet, M. et al. New insights on the late Pleistocene–Holocene lithic industry in East Kalimantan (Borneo): the contribution of three rock shelter sites in the karstic area of the Mangkalihat peninsula. Quat. Int. 416, 126–150 (2016).

  • 15.

    Plagnes, V. et al. Cross dating (Th/U-14C) of calcite covering prehistoric paintings in Borneo. Quat. Res. 60, 172–179 (2003).

  • 16.

    Bellwood, P. Prasejarah Kepulauan Indo-Malaysia (PT Gramedia Pustaka Utama, Jakarta, 2000).

  • 17.

    O’Connor, S. et al. Ideology, ritual performance and its manifestations in the rock art of Timor-Leste and Kisar Island, Island Southeast Asia. Camb. Archaeol. J. 28, 225–241 (2018).

  • 18.

    Aubert, M. et al. Uranium-series dating rock art in East Timor. J. Archaeol. Sci. 34, 991–996 (2007).

  • 19.

    Conard, N. J. Palaeolithic ivory sculptures from southwestern Germany and the origins of figurative art. Nature 426, 830–832 (2003).

  • 20.

    Higham, T. et al. Testing models for the beginnings of the Aurignacian and the advent of figurative art and music: the radiocarbon chronology of Geißenklösterle. J. Hum. Evol. 62, 664–676 (2012).

  • 21.

    Bahn, P. G. & Vertut, J. Journey Through the Ice Age (Weidenfeld & Nicolson, London, 1997).

  • 22.

    Westaway, K. E. et al. An early modern human presence in Sumatra 73,000–63,000 years ago. Nature 548, 322–325 (2017).

  • 23.

    Clarkson, C. et al. Human occupation of northern Australia by 65,000 years ago. Nature 547, 306–310 (2017).

  • 24.

    Barker, G. & Farr, L. (eds) Archaeological Investigations in the Niah Caves, Sarawak, 1954–2004 (McDonald Institute for Archaeological Research, Cambridge, 2016).

  • 25.

    Curnoe, D., Datan, I., Taçon, P. S. C., Leh Moi Ung, C. & Sauffi, M. S. Deep Skull from Niah Cave and the Pleistocene peopling of Southeast Asia. Front. Ecol. Evol. 4, 75 (2016).

  • 26.

    Salas, L. A. et al. Biodiversity, endemism and the conservation of limestone karsts in the Sangkulirang Peninsula, Borneo. Biodiversity (Nepean) 6, 15–23 (2005).

  • 27.

    Chaloupka, G. Journey in Time (Reed Books, Sydney, 1993).

  • 28.

    Walsh, G. Bradshaw Art of the Kimberley (Takarakka Nowan Kas, Toowong, 2000).

  • 29.

    Fuentes, O. The social dimension of human depiction in Magdalenian rock art (16,500 cal. bp–12,000 cal. bp): the case of the Roc-aux-Sorciers rock-shelter. Quat. Int. 430, 97–113 (2017).

  • 30.

    Higham, T. European Middle and Upper Palaeolithic radiocarbon dates are often older than they look: problems with previous dates and some remedies. Antiquity 85, 235–249 (2011).

  • 31.

    Bourdon, B., Henderson, G. M., Lundstrom, C. C. & Turner, S. P. Uranium-series Geochemistry (Mineralogical Society of America, Chantilly, 2003).

  • 32.

    Zhao, J. X., Yu, K. F. & Feng, Y. X. High-precision 238U–234U–230Th disequilibrium dating of the recent past – a review. Quat. Geochronol. 4, 423–433 (2009).

  • 33.

    Clark, T. R. et al. Spatial variability of initial 230Th/232Th in modern Porites from the inshore region of the Great Barrier Reef. Geochim. Cosmochim. Acta 78, 99–118 (2012).

  • 34.

    Clark, T. R. et al. Discerning the timing and cause of historical mortality events in modern Porites from the Great Barrier Reef. Geochim. Cosmochim. Acta 138, 57–80 (2014).

  • 35.

    Zhou, H. Y., Zhao, J. X., Wang, Q., Feng, Y. X. & Tang, J. Speleothem-derived Asian summer monsoon variations in Central China during 54–46 ka. J. Quat. Sci. 26, 781–790 (2011).

  • 36.

    Cheng, H. et al. The half-lives of uranium-234 and thorium-230. Chem. Geol. 169, 17–33 (2000).

  • 37.

    Ludwig, K. R. User’s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center Special Publication No. 5) (Berkeley Geochronology Center, Berkeley, 2012).

  • 38.

    St Pierre, E., Zhao, J. X. & Reed, E. Expanding the utility of uranium-series dating of speleothems for archaeological and palaeontological applications. J. Archaeol. Sci. 36, 1416–1423 (2009).

  • 39.

    Hoffmann, D. L. et al. U–Th dating of carbonate crusts reveals Neandertal origin of Iberian cave art. Science 359, 912–915 (2018).

  • 40.

    Hellstrom, J. U–Th dating of speleothems with high initial 230Th using stratigraphical constraint. Quat. Geochronol. 1, 289–295 (2006).

  • 41.

    Paterson, D. et al. The X-ray fluorescence microscopy beamline at the Australian Synchrotron. AIP Conf. Proc. 1365, 219–222 (2011).

  • 42.

    Ryan, C. G. Quantitative trace element imaging using PIXE and the nuclear microprobe. Int. J. Imaging Syst. Technol. 11, 219–230 (2000).

  • Article credit to: http://feeds.nature.com/~r/nature/rss/current/~3/DYj2qISKgbw/s41586-018-0679-9

    Similar Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *