• 1.

    Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) Ch. 5 (Cambridge Univ. Press, 2013).

  • 2.

    Naish, T. R. & Wilson, G. S. Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record. Phil. Trans. R. Soc. Lond. A 367, 169–187 (2009).

  • 3.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, PA1003 https://doi.org/10.1029/2004PA001071 (2005).

  • 4.

    Miller, K. G. et al. High tide of the warm Pliocene: implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012).

  • 5.

    Dutton, A. et al. Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science 349, aaa4019 (2015).

  • 6.

    Grant, G. et al. Mid- to late Pliocene (3.3–2.6 Ma) global sea-level fluctuations recorded on a continental shelf transect, Whanganui Basin, New Zealand. Quat. Sci. Rev. 201, 241–260 (2018).

  • 7.

    Pollard, D., DeConto, R. M. & Alley, R. B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 412, 112–121 (2015).

  • 8.

    Rohling, E. J. et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477–482 (2014); erratum 510, 432 (2014).

  • 9.

    Rovere, A. et al. The Mid-Pliocene sea-level conundrum: glacial isostasy, eustasy and dynamic topography. Earth Planet. Sci. Lett. 387, 27–33 (2014).

  • 10.

    Raymo, M. E., Mitrovica, J. X., O’Leary, M. J., DeConto, R. M. & Hearty, P. J. Departures from eustasy in Pliocene sea-level records. Nat. Geosci. 4, 328–332 (2011).

  • 11.

    Evans, D., Brierley, C., Raymo, M. E., Erez, J. & Müller, W. Planktic foraminifera shell chemistry response to seawater chemistry: Pliocene–Pleistocene seawater Mg/Ca, temperature and sea level change. Earth Planet. Sci. Lett. 438, 139–148 (2016).

  • 12.

    Gasson, E., DeConto, R. M. & Pollard, D. Modeling the oxygen isotope composition of the Antarctic ice sheet and its significance to Pliocene sea level. Geology 44, 827–830 (2016).

  • 13.

    Tapia, C. A. et al. High-resolution magnetostratigraphy of mid-Pliocene (3.3–3.0 Ma) shallow-marine sediments, Whanganui Basin, New Zealand. Geophys. J. Int. 217, 41–57 (2019).

  • 14.

    van Rijn, L. C. Unified view of sediment transport by currents and waves. I: Initiation of motion, bed roughness, and bed-load transport. J. Hydraul. Eng. 133, 649–667 (2007).

  • 15.

    Trewick, S. A. & Bland, K. J. Fire and slice: palaeogeography for biogeography at New Zealand’s North Island/South Island juncture. J. R. Soc. NZ 42, 153–183 (2012).

  • 16.

    Kominz, M. & Pekar, S. Oligocene eustasy from two-dimensional sequence stratigraphic back-stripping. Bull. Geol. Soc. Am. 113, 291–304 (2001).

  • 17.

    Lourens, L. J. et al. Evaluation of the Plio-Pleistocene astronomical timescale. Paleoceanogr. Paleoclim. 11, 391–413 (1996).

  • 18.

    Laskar, J. et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004).

  • 19.

    de Boer, B., Haywood, A. M., Dolan, A. M., Hunter, S. J. & Prescott, C. L. The transient response of ice volume to orbital forcing during the warm Late Pliocene. Geophys. Res. Lett. 44, 10486–10494 (2017).

  • 20.

    Golledge, N. et al. Antarctic climate and ice sheet configuration during the early Pliocene interglacial 4.23 Ma. Clim. Past 13, 959–975 (2017).

  • 21.

    Patterson, M. et al. Orbital forcing of the East Antarctic Ice Sheet during the Pliocene and Early Pleistocene. Nat. Geosci. 7, 841–847 (2014).

  • 22.

    Jansen, E., Fronval, T., Rack, F. & Channell, J. E. Pliocene-Pleistocene ice rafting history and cyclicity in the Nordic Seas during the last 3.5 Myr. Paleoceanography 15, 709–721 (2000).

  • 23.

    Bailey, I. et al. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on the geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat. Sci. Rev. 75, 181–194 (2013).

  • 24.

    Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanogr. Paleoclim. 24, https://doi.org/10.1029/2008PA001669 (2009).

  • 25.

    Herbert, T. D., Peterson, L. C., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010).

  • 26.

    Martínez-Garcia, A. et al. Southern Ocean dust-climate coupling over the past four million years. Nature 476, 312–315 (2011).

  • 27.

    Shackleton, N. J. et al. Oxygen isotope calibration of the onset of ice-rafting and history of glaciation in the North Atlantic region. Nature 307, 620 (1984).

  • 28.

    Fretwell, P. et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 7, 375–393 (2013).

  • 29.

    Naish, T. et al. Obliquity-paced Pliocene West Antarctic ice sheet oscillations. Nature 458, 322 (2009).

  • 30.

    Spada, G. et al. Modeling Earth’s post-glacial rebound. Eos 85, 62–64 (2004).

  • 31.

    Journeaux, T. D., Kamp, P. J. J. & Naish, T. R. Middle Pliocene cyclothems, Mangaweka Region, Wanganui Basin, New Zealand: a lithostratigraphic framework. NZ J. Geol. Geophys. 39, 135–149 (1996).

  • 32.

    Ogg, J. G. Geomagnetic polarity time scale. In The Geologic Time Scale 2012 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. & Ogg, G.) 85–113 (Elsevier, 2012).

  • 33.

    Turner, G. M. et al. A coherent middle Pliocene magnetostratigraphy, Wanganui Basin, New Zealand. J. R. Soc. NZ 35, 197–227 (2005).

  • 34.

    Swift, D. J. Quaternary shelves and the return to grade. Mar. Geol. 8, 5–30 (1970).

  • 35.

    Wright, J., Colling, A. & Park, D. (eds) Waves, Tides, and Shallow-Water Processes Vol. 4 (Gulf Professional Publishing, 1999).

  • 36.

    Dunbar, G. B. & Barrett, P. J. Estimating paleobathymetry of wave-graded continental shelves from sediment texture. Sedimentology 52, 253–269 (2005).

  • 37.

    Komar, P. D. & Miller, M. C. On the comparison between the threshold of sediment motion under waves and unidirectional currents with a discussion of the practical evaluation of the threshold: Reply. J. Sedim. Res. 45, 362–367 (1975).

  • 38.

    Grant, G. R. et al. A Pliocene relative sea level record from New Zealand calculated from grain size. https://doi.pangaea.de/10.1594/PANGAEA.902701 (PANGAEA, 2019).

  • 39.

    Chin, J. L. Late Quaternary Coastal Sedimentation and Depositional History, South-Central Monterey Bay, California. Ph.D. thesis, San Jose State Univ. (1984).

  • 40.

    Beaumont, J., Anderson, T. J. & MacDiarmid, A. B. Benthic Flora and Fauna of the Patea Shoals Region, South Taranaki Bight. NIWA Client Report No. WLG2012-55 (NIWA, 2013).

  • 41.

    Hume, T., Gorman, R., Green, M. & MacDonald, I. Coastal Stability in the South Taranaki Bight – Phase 2: Potential Effects of Offshore Sand Extraction on Physical Drivers and Coastal Stability. NIWA Client Report No. HAM2013-082 (NIWA, 2013).

  • 42.

    Scripps Institution of Oceanography. CDIP: Coastal Data Information Program. http://cdip.ucsd.edu/themes/cdip?d2=p70&u3=dt:201101:p_id:p70:ibf:1:mode:all:s:156:st:1:t:data (2018).

  • 43.

    MetOcean View. MetOcean View Hindcast. https://hindcast.metoceanview.com/ (2017).

  • 44.

    McCave, I. N. Wave effectiveness at the sea bed and its relationship to bed-forms and deposition of mud. J. Sedim. Res. 41, 89–96 (1971).

  • 45.

    Coastal Engineering Research Centre. Shore Protection Manual Vols I and II (US Army Corps of Engineers, Washington DC, 1984).

  • 46.

    Li, X. et al. Mid-Pliocene westerlies from PlioMIP simulations. Adv. Atmos. Sci. 32, 909–923 (2015).

  • 47.

    Meyers, S. R. Astrochron: An R Package for Astrochronology. https://cran.r-project.org/package=astrochron (2014).

  • 48.

    Kominz, M. A. Late Cretaceous to Miocene sea-level estimates from the New Jersey and Delaware coastal plain coreholes: an error analysis. Basin Res. 20, 211–226 (2008).

  • 49.

    Farrell, W. E. & Clark, J. A. On postglacial sea-level. Geophys. J. R. Astron. Soc. 46, 647–667 (1976).

  • 50.

    Spada, G. & Stocchi, P. SELEN: A Fortran 90 program for solving the “sea-level equation”. Comput. Geosci. 33, 538–562 (2007).

  • 51.

    Stocchi, P. et al. MIS 5e relative sea-level changes in the Mediterranean Sea: contribution of isostatic disequilibrium. Quat. Sci. Rev. 185, 122–134 (2018).

  • 52.

    Mitrovica, J. X. & Peltier, W. R. On postglacial geoid subsidence over the equatorial oceans. J. Geophys. Res. B 96, 20053–20071 (1991).

  • 53.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

  • 54.

    Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE. Annu. Rev. Earth Planet. Sci. 32, 111–149 (2004).

  • 55.

    de Boer, B., Stocchi, P. & Van De Wal, R. A fully coupled 3-D ice-sheet-sea-level model: algorithm and applications. Geosci. Model Dev. 7, 2141–2156 (2014).

  • 56.

    Milne, G. A. & Mitrovica, J. X. Searching for eustasy in deglacial sea-level histories. Quat. Sci. Rev. 27, 2292–2302 (2008).

  • 57.

    Milne, G. A., Gehrels, W. R., Hughes, C. W. & Tamisiea, M. E. Identifying the causes of sea-level change. Nat. Geosci. 2, 471–478 (2009).

  • 58.

    Mitrovica, J. X. et al. On the robustness of predictions of sea level fingerprints. Geophys. J. Int. 187, 729–742 (2011).

  • 59.

    Yamane, M. et al. Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics. Nat. Commun. 6, 7016 (2015).

  • 60.

    Dolan, A. M., de Boer, B., Bernales, J., Hill, D. J. & Haywood, A. M. High climate model dependency of Pliocene Antarctic ice-sheet predictions. Nat. Commun. 9, 2799 (2018).

  • 61.

    Shakun, J. D. et al. Minimal East Antarctic Ice Sheet retreat onto land during the past eight million years. Nature 558, 284 (2018).

  • 62.

    Hay, C. et al. The sea-level fingerprints of ice-sheet collapse during interglacial periods. Quat. Sci. Rev. 87, 60–69 (2014).

  • 63.

    Kopp, R. E. et al. Temperature-driven global sea-level variability in the common era. Proc. Natl Acad. Sci. USA 113, E1434–E1441 (2016); correction. 113, E5694–E5696 (2016).

  • 64.

    Bamber, J. L., Riva, R. E., Vermeersen, B. L. & LeBrocq, A. M. Reassessment of the potential sea-level rise from a collapse of the West Antarctic Ice Sheet. Science 324, 901–903 (2009).

  • Article credit to: http://feeds.nature.com/~r/nature/rss/current/~3/6yRnVOXHxK0/s41586-019-1619-z

    Similar Posts

    Leave a Reply

    Your email address will not be published. Required fields are marked *